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Abstract—This paper presents a perturbational approach based concern is then the unavoidable perturbational effects on the

upon the spectral domain technique for the analysis of the discon-

tinuity effects introduced by a thin slot in the ground plane of a

microstrip line. The discontinuity problem is formulated in terms

of the unknown slot field by using the notion of equivalent half-

space problems, using a new rigorous procedure for deriving the

TE-TM decomposition of the fields and equivalent transmission
line models. The perturbation current on the infinite microstrip is
computed once the electric field in the slot has been derived, and

an equivalent circuit for the discontinuity is obtained from this
perturbation cnrrent for the Iow-freqnency regime. Computed
results are presented and compared to the measured data.

I. INTRODUCTION

OVER the past several years, considerable attention has

been devoted to the problem of characterizing microstrip

discontinuities, and a number of different approaches have

been employed to investigate them. These approaches include:

static and quasi-static methods [1] – [6], which are applicable

in the low-frequency regime and are based on the modeling of

the discontinuity by equivalent lumped circuit elements; more

accurate waveguide models [7] – [9], which incorporate the

frequency-dependent properties of the discontinuities; and rig-

orous full-wave analyses, such as the mode matching technique

[10], [11] or the spectral domain approach [12] -[15], both of

which provide more accurate results over a wide frequency

range. While the more common discontinuities, e.g., bends and

step discontinuities, have been studied rather extensively, one

discontinuity that has received little attention in the literature

is that of the thin slot in the ground plane of a microstrip line.

Although considerable work has been done in investigating

the comparable geometries of microstrip-fed slot antennas

[16] -[20], no analysis is available for the discontinuity effects

of a thin slot. This is understandable since one of the primary

objectives in the antenna design is to have an efficient radi-

ator by maximizing the amount of energy coupled from the

microstrip to the slot. However, in many circuits, slots may

be present not for radiation purposes but rather to provide

other functions such as allowing vias to run through them, and

facilitating the mechanical support. In such cases, the radiation

effects are generally expected to be small, and the primary

Manuscript received August 7, 1992; revised December 21, 1992.
A. B. Kouki is with the Microwave Research Laboratory, Electrical and

Computer Engineering Department, Ecole Polytechnique de Montreal, Mon-
treal, P.Q., Canada H3C 3A7.

R. Mittra is with the Electromagnetic Communication Laboratory, Univer-

sity of Illinois, 1406 W. Green St., Urbana, IL 61801.

C. H. Chan is with the Electrical Engineering Department, University of
Washington, Seattle, WA 98195.

IEEE Log Number 9210217.

microstrip current. This intuitive “description must be backed

by a rigorous electromagnetic analysis, not only to verify it,

but also to study the range of its validity as one expects the

effects of the discontinuity to be more prominent at higher

frequencies.

In this paper, a spectral domain-based perturbational ap-

proach is used to analyze the discontinuity effects due to the

presence of a thin slot in the ground plane of a microstrip line.

This approach comprises the following five steps.

1) Initially, the microstrip currents are assumed to be those

of the unperturbed geometry, i.e., in the absence of the slit.

These original currents, along with the dominant mode’s

propagation constant, can be obtained by following the method

described in [21].

2) Next, the results of the previous step are used to compute

the slot’s electric field. This is done through a procedure where

equivalent half-space problems are constructed, a TE-y–TM-~

decomposition of the fields is applied along with equivalent

transmission line models to derive expressions for the dyadic

Green’s function, and the continuity of the tangential magnetic

field in the slot is enforced in a Galerkin procedure to yield

the desired matrix equation.

3) Once the slot’s electric field is obtained, it is then used as

the source of the incident field for calculating the perturbation

current on the strip.

4) The original microstrip currents are replaced by the

perturbation currents of step 3 and the process is iterated until

convergence.

5) After convergence, the scattering parameters of the dis-

continuity are computed from the resulting current distribution.

Fig. 1 depicts the

II. FORMULATION

geometry of the slit discontinuity to be

analyzed. The ground plane is taken to coincide with the x-z

plane, and is assumed to extend infinitely in both of these di-

rections. The substrate material is assumed to be isotropic and

nonmagnetic, but may have an arbitrary complex permittivity.

All conductors are assumed to be infinitely conducting and

to have zero thickness. The solution process consists of two

main phases: the computation of the slot’s electric field given

a microstrip current, and the determination of the perturbation

current induced on the strip given an electric field distribution

in the slot.
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Fig. 1. Geometry of the thin slot discontinuity in the ground plane of a

microstrip line.

A. The Electric Field in the Slot

The initial microstrip current is easily obtained from a

spectral domain analysis such as the one described in [21].

To compute the slot’s electric field due to a given microstrip

current, a procedure similar to [22] is followed whereby the

original problem is decomposed in two equivalent half-space

ones. This is accomplished by first shorting the aperture and

then restoring its electric field by an equivalent magnetic

current radiating in the presence of the shorted plane, see

Fig. 2. Next, individual expressions for the magnetic field on

each side of the conducting plane are written in the general

form

zi=l?m+& (1)

where Hm denotes themagnetic field produced by theequiva-

lent magnetic current (scattered field) whilefii represents the

incident magnetic field due to the strip current radiating in

the presence of the shorted plane (present only in the y >0

half-space). Finally, the desired integral equation is obtained

by imposing the continuity of the tangential magnetic field

through the slot.

First, consider the scattered field term. For the ith ho-

mogeneous, source-free region in a given half-space, the

electromagnetic fields can be written in terms of an electric

vector potential as

y=o y=() y=l)

(a) (b) (c)

Fig. 2. Construction of the equivalent half-space problems. (a) Original
problem, valid everywhere; (b) equivalent left-half-space problem, valid for
y >0 only; (c) equivalent right-half-space problem, valid for y <0 only.

Defining the electric vector potential ~i as

with

Gi(F, F’) =
~–jlc%/F-F’/

41r/F– ?’/
and

A7i(?=’)= M.(F”)i + MZ(F’)2 (3b)

and using the Fourier transform given by the pair

equation (2) yields the following expressions for the electric

and magnetic fields in the transform domain:

where the spatial derivatives & and & have been replaced

by ja and j~, respectively, by virtue of the Fourier transform

property. It can now be easily seen that a TE–TM decompc~si-

tion of the fields with respect to the y-axis is readily obtainable

by setting the equations for y-components of the electric amd

magnetic fields in (5) equal to zero. Thus, for a given spectral

component specified by its (a, ~) values, an arbitrary surface+
magnetic current U can be written as

it’ =A2.121+ AZ.222 (6)

with ~ez producing the TE-y fields while fiel gives the TM-

y components. The new components fl.l and ~.2 are given

by

{

/3Aj. – CYMz = gel
CM. + pill. = M.2

(7)
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Fig. 3. Coordinate transformation for the TE–TM decomposition of the
fields.

and the unit vectors 21 and 22 are related the (~, .2) coordinate

system by (see Fig. 3)

[1[61 Cos 6

1[1

–sin~ ~— (8)
& — sin 19 Cos 0 2

with sin 6’ = Q/~~ and cos b’ = @/ ~-.

From (5) and (7), one can show that the TE-y fields are

~~j, E~I, H2z} and the TM-Y wmponents are {E;, Hjl,

E~2 }. Note that (7) and (8) are similar tQ those given in [21]

but, because of the duality Qf the current source and the choice

of potential in (2-3), (;l, ;2) are equivalent to ( –u, v) in [21].

Next, writing Maxwell’s curl equations in the (;l, 42) co-

ordinate system and using the above TE–TM decomposition,

one obtains

(9)

where 7? = C# + ,82 + ET% k;. These equations are equivalent

to the telegraphist equations with E * V and H * I. With

this equivalence, electric surface currents at a given y location

are represented by a shunt current source, while magnetic

surface currents (aperture electric fields) are equivalent tQ

series voltage sources. Therefore, the analysis of the orig-
inal field problem can nQw be converted to one of the

so]ution Qf simple transmission line circuits. Hence, using

the transmission line models for the TE–TM fields and the

coordinate transformation of (8), the tangential components of

the scattered magnetic field on either side of the slot (y = O*)

are written as

[

Y; sin2@ + Ye- cos20 sin 0 cos 0 (Y; – Y,-)

sin d cos 0 (Yh– – Ye- ) Y,- sinzd + Yk- cosz$ 1
“[ 1–ill.–Mz(11)

where

{

yh- = y:

ye- = yotm
(12)

with Y:, = Ti/(jwp) and Y~m = jwsi/(7,).

Similarly, the spectral decomposition described above can

be used to derive an expression for the incident magnetic field

at the plane of the sld. Again, this field is produced by the

microstrip currents in the presence of a shorted grcmnd plane.

Note that because of the duality of the source, J.l produces

the TE-y fields, while J,2 is associated with the TM-y fields,

so that

[1H;~:=l)+
[

sin d cos 9(Y; – Y;) Y; sin2$ cos 6 – Y: cos2d

Y: cos219 + Y; sin2@ sin 19CQS O(Y{ – Y;) 1

with

(14)

Finally, the boundary condition on the total tangential mag-

netic field must be enforced. In the spatial domain, this

condition reads

/s fit+.$dxdz= /7 l?- .~dxdz.
aperture aperture

(15)

Invoking Parseval’s equality, (15) yields

This equation is then solved using a moment method approach.

[

Y: sin20 + Y,+ cos20 sin 0 cos 6’ (Y~+ – Ye+) 1
B. The Perturbation Current

sin 19cos 0 (I’h+ – Y,+) Y,+ sin20 + Y$ cos28 Denoting the unknown perturbation current as ;P, the

“[ 1Mz scattered electric field associated with it, ~ ‘P, can be written

Mz
(10) as

~ 5P = qP + ~;P .

and
(17)

[1H~ The incident field term, l?$p, is provided by the magnetic
By = current of the aperture. It is evaluated at y = t in the absence

o– of the conducting strip, and is similar in form to (10) and
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Fig. 4. Basis functions for expanding the z-directed apertrrre electric field.

(11). Enforcing the boundary condition on the total tangential

electric field on the strip gives

/
l?jsp. ?dxd.z=– J l?~p. ?dxdz. (18)

stTip strip

Again, using Parseval’s equality, the transform domain version

of (18) reads

Equation (19) is then solved using the moment method.

III. NUMERICAL IMPLEMENTATION AND RESULTS

All the results presented in this section are for a microstrip

structure with a dielectric constant of 4.7, a dielectric height of

31 roils, and strip width of 55 roils giving a 500 line. Also,

the following simplifying assumptions have been made.

1) The slot is thin in the z-direction. Therefore, the x-

directed aperture electric field can be neglected with good

accuracy. Consequently, only ~z is retained as the unknown

in (10), (11), and (16).

2) The ~-directed electric current on the strip is neglected.

This approximation is good for the relatively low frequencies

considered here (1 –3 GHz) where the strip width is a small

fraction of the wavelength.

3) The dominant mode is assumed to be the only mode

propagating in the structure.

In the moment method solution of (8), the aperture electric

field is expanded in terms of a set of roof-top basis functions as

shown in Fig. 4. The number of such basis functions is chosen

so as to ensure that a minimum of 10 per dielectric region

wavelength are used. Using Galerkin testing, a matrix equation
is set up and solved for the aperture field distribution. Figs. 5

and 6 present’ the magnitude and phase of such distributions

for a 10 cm (in $) by 5 mm (in z) slot at 1, 2, and 3 GHz.

In computing the induced strip current from the slot’s

aperture field, care must be taken in choosing the expansion

and testing functions because the strip is assumed to be of
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Fig. 6. Phase of the z-directed electric field in a 10-cm slot at different
frequencies.

infinite extent in the z-direction. A good choice for :such

functions is described in [14] and [23], where it has been

applied to the various discontinuities. Here, with the above

assumptions, the induced current can be expanded in the fclrm

{

J;(X, 2) = T[<el(%s){f:(~) - ~f;(~)}]
(20)

J;(x, .2)= R[<el(iz,$){.f;(~) + ~.f;(z)}l

where T and R represent the transmission and reflection

coefficients, respectively. In terms of scattering parameters,

R represents S11 while T corresponds to S21. The x- and

z-dependencies in (20) are as follows:

and

{

j~(~) = COS(POZ) &/4< z < (v+ l/4)Ao

&(z) = sin(@) O < z < v~.
f;(z) = cos(~oz) -(v + l/4)Ao < z < -Ao/4 ’22)

~j(z) = sin(p.z) -vA. < z <0

with t being the width of the strip, ~o the dominant mc~de’s

propagation constant, & the dominant mode’s wavelength:, and

n an integer. Note that the truncation used above and shown

in Fig. 7 ensures that no artificial discontinuity y is introduced

since all functions start from zero and go to zero at their

truncation points.
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Fig. 7. Basis functions for expanding the induced z-directed microstrip
current. (a) Truncation scheme for z > 0: ----, — imaginary part;
(b) truncation scheme for z <0: ----, — imaginary part.

The Fourier transform of (20) is given by

It can be shown, using l’Hosipital’s rule, that both expressions

in (23) approach finite limits as ,0 ~ + ,& and the singularity

problem is avoided. However, the exponential terms in (23)

give rise to highly oscillatory integrands that present a serious

numerical difficulty when evaluating the inner products by

numerical integration. Furthermore, the rate of oscillation

becomes higher as the basis functions are truncated at distances

farther away from the slot (i.e., as v becomes larger). To avoid

compounding this problem, a non-Galerkin testing procedure

is employed by choosing pulse testing functions that extend

from O to (v+ 1/4))0 for z >0, and from –(.v + l/4)&

for z < 0.

With the above choice of basis and testing functions, a

set of results for the reflection and transmission coefficients

or, equivalently, the S-parameters, of the slot discontinuity

have been obtained for a slot of dimensions 1 x 0.05 in. The

truncation points have been chosen at three guide wavelengths

from the axis of the slot. Typically, three iterations steps are

sufficient to obtain convergence of the perturbational current.

The results from the numerical computations are compared

to measurements carried out on the network analyzer (HP

8510), and show good agreement as can be seen from Figs. 8

and 9. This agreement does, however, deteriorate at higher

frequencies. This is to be expected since at these frequencies

the thin-slot assumption that the ~-directed electric field in the

slot is negligible starts to break down. Furthermore, a more
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Fig. 10. Optimized equivalent circuit model for the slot of Figs. 8 and 9
for frequencies between 0.5 and 3.0 GHz. (a) Equivalent circuit; (b) ❑ S11
measured, +S11 from equivalent circuit; (c) ❑ S2 ~ measured, +S2 ~ from

equivalent circuit.

accurate description (i.e., one that would include edge effects)

of the z-directed aperture field is needed at the higher fre-

quencies in addition to a more complete representation of the
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microstrip currents (both z- and z-directed). These corrective

measures can all be introduced with no additional efforts in

the formulation process presented above. However, the real

cost of eliminating the simplifying assumptions and opting

instead for the fully rigorous approach is that the numeri-

cal worlchesources required are more than doubled. For the

frequency range considered, a simple equivalent circuit model

has been obtained. Using the measured data and the circuit

simulator TouchStone, the slot discontinuity was represented

by a T circuit with two inductances and a capacitance placed

on the microstrip line at the slots location. This circuit model,

showing the values for the inductances and the capacitance

obtained through a TouchStone optimization, and the corres-

ponding scattering parameters are shown in Fig. 10.
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