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Analysis of a Thin Slot Discontinuity in the
Reference Plane of a Microstrip Structure

Ammar B. Kouki, Member, IEEE, Raj Mittra, Fellow, IEEE, and Chi Hou Chan, Member, IEEE

Abstract—This paper presents a perturbational approach based
upon the spectral domain technique for the analysis of the discon-
tinuity effects introduced by a thin slot in the ground plane of a
microstrip line. The discontinuity problem is formulated in terms
of the unknown slot field by using the notion of equivalent half-
space problems, using a new rigorous procedure for deriving the
TE-TM decomposition of the fields and equivalent transmission
line models. The perturbation current on the infinite microstrip is
computed once the electric field in the slot has been derived, and
an equivalent circuit for the discontinuity is obtained from this
perturbation current for the low-frequency regime. Computed
results are presented and compared to the measured data.

I. INTRODUCTION

VER the past several years, considerable attention has

been devoted to the problem of characterizing microstrip
discontinuities, and a number of different approaches have
been employed to investigate them. These approaches include:
static and quasi-static methods [1]—[6], which are applicable
in the low-frequency regime and are based on the modeling of
the discontinuity by equivalent lumped circuit elements; more
accurate waveguide models [7]—[9], which incorporate the
frequency-dependent properties of the discontinuities; and rig-
orous full-wave analyses, such as the mode matching technique
[10], [11] or the spectral domain approach [12]—[15], both of
which provide more accurate results over a wide frequency
range. While the more common discontinuities, e.g., bends and
step discontinuities, have been studied rather extensively, one
discontinuity that has received little attention in the literature
is that of the thin slot in the ground plane of a microstrip line.
Although considerable work has been done in investigating
the comparable geometries of microstrip-fed slot antennas
[16]—-{20], no analysis is available for the discontinuity effects
of a thin slot. This is understandable since one of the primary
objectives in the antenna design is to have an efficient radi-
ator by maximizing the amount of energy coupled from the
microstrip to the slot. However, in many circuits, slots may
be present not for radiation purposes but rather to provide
other functions such as allowing vias to run through them, and
facilitating the mechanical support. In such cases, the radiation
effects are generally expected to be small, and the primary
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concern is then the unavoidable perturbational effects on the
microstrip current. This intuitive description must be backed
by a rigorous electromagnetic analysis, not only to verify it,
but also to study the range of its validity as one expects the
effects of the discontinuity to be more prominent at higher
frequencies.

In this paper, a spectral domain-based perturbational ap-
proach is used to analyze the discontinuity effects due to the
presence of a thin slot in the ground plane of a microstrip line.
This approach comprises the following five steps.

1) Initially, the microstrip currents are assumed to be those
of the unperturbed geometry, i.e., in the absence of the slit.
These original currents, along with the dominant mode’s
propagation constant, can be obtained by following the method
described in [21].

2) Next, the results of the previous step are used to compute
the slot’s electric field. This is done through a procedure where
equivalent half-space problems are constructed, a TE-y—TM-y
decomposition of the fields is applied along with equivalent
transmission line models to derive expressions for the dyadic
Green’s function, and the continuity of the tangential magnetic
field in the slot is enforced in a Galerkin procedure to yield
the desired matrix equation.

3) Once the slot’s electric field is obtained, it is then used as
the source of the incident field for calculating the perturbation
current on the strip.

4) The original microstrip currents are replaced by the
perturbation currents of step 3 and the process is iterated until
convergence.

5) After convergence, the scattering parameters of the dis-
continuity are computed from the resulting current distribution.

II. FORMULATION

Fig. 1 depicts the geometry of the slit discontinuity to be
analyzed. The ground plane is taken to coincide with the z-z
plane, and is assumed to extend infinitely in both of these di-
rections. The substrate material is assumed to be isotropic and
nonmagnetic, but may have an arbitrary complex permittivity.
All conductors are assumed to be infinitely conducting and
to have zero thickness. The solution process consists of two
main phases: the computation of the slot’s electric field given
a microstrip current, and the determination of the perturbation
current induced on the strip given an electric field distribution
in the slot.
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Fig. 1. Geometry of the thin slot discontinuity in the ground plane of a

microstrip line.

A. The Electric Field in the Slot

The initial microstrip current is easily obtained from a
spectral domain analysis such as the one described in [21].
To compute the slot’s electric field due to a given microstrip
current, a procedure similar to [22] is followed whereby the
original problem is decomposed in two equivalent half-space
ones. This is accomplished by first shorting the aperture and
then restoring its electric field by an equivalent magnetic
current radiating in the presence of the shorted plane, see
Fig. 2. Next, individual expressions for the magnetic field on
each side of the conducting plane are written in the general
form

where H,, denotes the magnetic field produced by the equiva-
lent magnetic current (scattered field) while H; represents the
incident magnetic field due to the strip current radiating in
the presence of the shorted plane (present only in the y > 0
half-space). Finally, the desired integral equation is obtained
by imposing the continuity of the tangential magnetic field
through the slot.

First, consider the scattered field term. For the :th ho-
mogeneous, source-free region in a given half-space, the
electromagnetic fields can be written in terms of an electric
vector potential as

Bi, = —jwe; F +—Mv(v «F') and Ej=-VxF'.
@
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Fig. 2. Construction of the equivalent half-space problems. (a) Original
problem, valid everywhere; (b) equivalent left-half-space problem, valid for
y > 0 only; (c) equivalent right-half-space problem, valid for y < 0 only.

Defining the electric vector potential Fias

Fig = [ [emmiea oo
with ‘
Gz — —jk./F_FI/ d
(") = At [7—7'/ an
M(#') = Mu(F")i + M,(7')z (3b)
and using the Fourier transform given by the pair
F(a,B) ffo [0 @, 2)e™3(02482) 4y 4z @
f(@,2) = 5[5, [52 F(a, B)e?@+52) da dp )

equation (2) yields the following expressions for the electric
and magnetic fields in the transform domain:

(i _a(é;;z,)

{ Ei= j[aMz—ﬁMz]é@

Bi = 8(G' M)

\ 'z 9y
Hi = —jwe; G M, “m[ (aM +/3M>G’]
i = U}”: {(aM +ﬁM)G‘ }] 5)
Hi = —jwe; G’ M, —W[ ( M, +ﬁM) ]

2

where the spatial derivatives 5> and & have been replaced
by ja and j3, respectively, by virtue of the Fourier transform
property. It can now be easily seen that a TE—~TM decomposi-
tion of the fields with respect to the y-axis is readily obtainable
by setting the equations for y-components of the electric and
magnetic fields in (5) equal to zero. Thus, for a given spectral
component speciﬁe_(} by its («, 3) values, an arbitrary surface

magnetic current M can be written as
M = Mc1€1 + Meoés (6)

with Meg producing the TE-y fields Wl’lﬂe Mel g~ives the TM-
y components. The new components M., and M.y are given
by

{ﬂM —aM, = M. @
aM, + BM, = M.,
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Fig. 3. Coordinate transformation for the TE-TM decomposition of the
fields.

and the unit vectors &; and é; are related the (&, 2) coordinate

system by (see Fig. 3)
€1 cosf —sinf|[2
[éz] o [sin@ cos 6 H:ﬁ] ®)

with sinf = o/v/a?2+ 32 and cosf = B/ a®+ 32
From (5) and (7), one can show that the TE-y ficlds are
{ 1, Hi,} and the TM-y components are {E? H%
E;z} Note that (7) and (8) are similar to those given in [21]
but, because of the duality of the current source and the choice
of potential in (2-3), (é1, és) are equivalent to (—u,v) in [21].

Next, writing Maxwell’s curl equations in the (é;,és) co-
ordinate system and using the above TE-TM decomposition,
one obtains

8E,

= jwull?
B gy~ = JwpHZ,
TE -y o, 2 s and
3y Jwp el
LY
5 : Jwe; Ely
™ —yl Y ©
IE;, N2
Sy )
oy Jwe, el

where 'yl =a’+ 62+ 6mk2 These equations are equivalent
to the telegraphist equations with E < Vand H « I. With
this equivalence, electric surface currents at a given y location
are represented by a shunt current source, while magnetic
surface currents (aperture electric fields) are equivalent to
series voltage sources. Therefore, the analysis of the orig-
inal field problem can now be converted to one of the
solution of simple transmission line circuits. Hence, using
the transmission line models for the TE—-TM fields and the
coordinate transformation of (8), the tangential components of
the scattered magnetic field on either side of the slot (y = 0%)
are written as

rTm

x fa—
o =
z | o+

Y,Fsin?0 + Y;* cos?0  sinf cos §(Y;"
sinf cos 6(Y,F — Y1)

— Ye+)
Y.t sin®6 + V' cos?6

M,
{m]m)

and
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Y, sin® + Y, cos?d  sinfcosd(V, —Y.")
sin @ cos H(Yh" - Ye_) Y, sin?f + Y, cos?f

where

1 Yy, +Yy) cothmit
Yh - Y;e YR +Y}E cothfylt

Y o and

cothyit

Y+ = Yth YO +Y1 cothvyit
Y, = Yy
< 12
S 2

with Y, = +*/(jwp) and Yy, = jwei/(%).

Similarly, the spectral decomposition described above can
be used to derive an expression for the incident magnetic field
at the plane of the slot. Again, this field is produced by the
microstrip currents in the presence of a shorted ground plane.
Note that because of the duality of the source, J.1 produces
the TE-y fields, while J.5 is associated with the TM-y fields,
so that

Hy|  _
|
o+
[sin@cos o(Y) —Y!) Y/sin®0cosf — Y/ cos 0}

V! cos?0 + Y/ sin*0  sinfcosf(Y) - Y!)
Iz
< 13
L}()
with
Y/ = Y /sinhy; t
h — Yﬁz—f-Ytle cothwy; t 14
Y, _ o /sinhy € ( )

Y° +Y L cothyt

Finally, the boundary condition on the total tangential mag-
netic field must be enforced. In the spatial domain, this
condition reads

// &#ﬁmwz// A Pdvds.
aperture aperture

(15)
Invoking Parseval’s equality, (15) yields

//ooffﬁdad,@ / /OOI}—Pdad,B
(16)

This equation is then solved using a moment method approach.

B. The Perturbation Current

Denoting the unknown perturbation current as JP, the
scattered electric field associated with it, £/ *P, can be written
as

E»=FF B3 (17)
The incident field term, ESP, is provided by the magnetic
current of the aperture. It is evaluated at y = ¢ in the absence
of the conducting strip, and is similar in form to (10) and
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Fig. 4. Basis functions for expanding the z-directed aperture electric field.
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(11). Enforcing the boundary condition on the total tangential
electric field on the strip gives

/ E? Pdzdz = —/ EF . Pdudz.
strip strip

Again, using Parseval’s equality, the transform domain version

of (18) reads
/ / BB dadf=- / / B B dadg.
19)

Equation (19) is then solved using the moment method.

(18)

III. NUMERICAL IMPLEMENTATION AND RESULTS

All the results presented in this section are for a microstrip
structure with a dielectric constant of 4.7, a dielectric height of
31 mils, and strip width of 55 mils giving a 50 €2 line. Also,
the following simplifying assumptions have been made.

1) The slot is thin in the z-direction. Therefore, the z-
directed aperture electric field can be neglected with good
accuracy. Consequently, only M, is retained as the unknown
in (10), (11), and (16).

2) The z-directed electric current on the strip is neglected.
This approximation is good for the relatively low frequencies
considered here (1-3 GHz) where the strip width is a small
fraction of the wavelength.

3) The dominant mode is assumed to be the only mode
propagating in the structure.

In the moment method solution of (8), the aperture electric
field is expanded in terms of a set of roof-top basis functions as
shown in Fig. 4. The number of such basis functions is chosen
s0 as to ensure that a minimum of 10 per dielectric region
wavelength are used. Using Galerkin testing, a matrix equation
is set up and solved for the aperture field distribution. Figs. 5
and 6 present the magnitude and phase of such distributions
for a 10 cm (in ) by 5 mm (in 2) slot at 1, 2, and 3 GHz.

In computing the induced strip current from the slot’s
aperture field, care must be taken in choosing the expansion
and testing functions because the strip is assumed to be of
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Fig. 6. Phase of the z-directed electric field in a 10-cm slot at different
frequencies.

infinite extent in the z-direction. A good choice for such
functions is described in [14] and [23], where it has been
applied to the various discontinuities. Here, with the above
assumptions, the induced current can be expanded in the form

' J;-(x’z) = T[(el(was){f]—_i—(z) _Jf;_(z)}]
J; (2,2) = R[Ca(a; s){f7 (2) + i f5 (2)}]

where T and R represent the transmission and reflection
coefficients, respectively. In terms of scattering parameters,
R represents Sq3 while T' corresponds to Sz;. The z- and
z-dependencies in (20) are as follows:

Guily7) = <28l = Dr(LF 2/7)] 1)
/1 - (z/7)’
and
fF(z) = cos(Boz) Aofd <z < (v+1/4)A
3 (2) =sin(foz) 0<z<wA @
Fi(2) =cos(Boz) —(v+1/4)X <2< —Xo/4
f5(z) =sin(Boz) —-vA; <2<0

with ¢ being the width of the strip, 3, the dominant mode’s
propagation coiistant, A, the dominant mode’s wavelength, and
n an integer. Note that the truncation used above and shown
in Fig. 7 ensures that no artificial discontinuity is introduced
since all functions start from zero and go to zero at their
truncation points.



1360
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Fig. 7. Basis functions for expanding the induced z-directed microstrip
current. (a) Truncation scheme for z > 0: ----, —— imaginary part;
(b) truncation scheme for z < 0: ----, —— imaginary part.

The Fourier transform of (20) is given by

4

I 8) =T |Gl gl

(e=3830 — 1) (e=9BNa/4 1 j)}
< -

J(a,8)=R

(23)
5@1 (O‘, S){ 3(2561—52

(@9 = ) (/5 4)

\

It can be shown, using 1’Hosipital’s rule, that both expressions
in (23) approach finite limits as § — + (3, and the singularity
problem is avoided. However, the exponential terms in (23)
give rise to highly oscillatory integrands that present a serious
numerical difficulty when evaluating the inner products by
numerical integration. Furthermore, the rate of oscillation
becomes higher as the basis functions are truncated at distances
farther away from the slot (i.e., as v becomes larger). To avoid
compounding this problem, a non-Galerkin testing procedure
is employed by choosing pulse testing functions that extend
from 0 to (v + 1/4)), for z > 0, and from —(v + 1/4)A,
for z < 0.

With the above choice of basis and testing functions, a
set of results for the reflection and transmission coefficients
or, equivalently, the S-parameters, of the slot discontinuity
have been obtained for a slot of dimensions 1 x 0.05 in. The
truncation points have been chosen at three guide wavelengths
from the axis of the slot. Typically, three iterations steps are
sufficient to obtain convergence of the perturbational current.
The results from the numerical computations are compared
to measurements carried out on the network analyzer (HP
8510), and show good agreement as can be seen from Figs. 8
and 9. This agreement does, however, deteriorate at higher
frequencies. This is to be expected since at these frequencies
the thin-slot assumption that the z-directed electric field in the
slot is negligible starts to break down. Furthermore, a more
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Fig. 8. Magnitude and phase of the measured and computed Sy for a
1 % 0.05 in slot.
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Fig. 9. Magnitude and phase of the measured and computed Sz for a
1 x 0.05 in slot.
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Fig. 10. Optimized equivalent circuit model for the slot of Figs. 8 and 9
for frequencies between 0.5 and 3.0 GHz. (a) Equivalent circuit; (b) O S11
measured, +51; from equivalent circuit; (c) O S21 measured, +S21 from
equivalent circuit.

accurate description (i.e., one that would include edge effects)
of the z-directed aperture field is needed at the higher fre-
quencies in addition to a more complete representation of the
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microstrip currents (both z- and z-directed). These corrective
measures can all be introduced with no additional efforts in
the formulation process presented above. However, the real
cost of eliminating the simplifying assumptions and opting
instead for the fully rigorous approach is that the numeri-
cal work/resources required “are more than doubled. For the
frequency range considered, a simple equivalent circuit model
has been obtained. Using the measured data and the circuit
simulator TouchStone, the slot discontinuity was represented
by a T circuit with two inductances and a capacitance placed
on the microstrip line at the slots location. This circuit model,
showing the values for the inductances and the capacitance
obtained through a TouchStone optimization, ard the corres-
ponding scattering parameters are shown in Fig. 10.
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